19 research outputs found

    Resource Allocation Using Reconfigurable Intelligent Surface (RIS)-Assisted Wireless Networks in Industry 5.0 Scenario

    Get PDF
    ABSTRACT: Mobile communication networks evolved from first-generation (1G) to sixth-generation (6G) and the requirement for quality of services (QoS) and higher bandwidth increased. The evolvement of 6G can be deployed in industry 5.0 to fulfill the future industry requirement. However, deploying 6G in industry 6.0 is very challenging, and installing a reconfigurable intelligent surface (RIS) is an efficient solution. RIS contains the passive elements which are programmed for the tuning of a wireless channel. We formulate an optimization problem to allocate resources in the RIS-supported network. This article presents a mixed-integer non-linear programable problem (MINLP) considering the industry 5.0 scenario and proposes a novel algorithm to solve the optimization problem. We obtain the e optimal solution using the proposed algorithm. The proposed algorithm is evaluated in energy efficiency (EE), throughput, latency, and channel allocation. We compare the performance of several algorithms, and the proposed algorithm outperforms all the algorithms

    Malicious UAV detection using integrated audio and visual features for public safety applications

    Get PDF
    RÉSUMÉ: Unmanned aerial vehicles (UAVs) have become popular in surveillance, security, and remote monitoring. However, they also pose serious security threats to public privacy. The timely detection of a malicious drone is currently an open research issue for security provisioning companies. Recently, the problem has been addressed by a plethora of schemes. However, each plan has a limitation, such as extreme weather conditions and huge dataset requirements. In this paper, we propose a novel framework consisting of the hybrid handcrafted and deep feature to detect and localize malicious drones from their sound and image information. The respective datasets include sounds and occluded images of birds, airplanes, and thunderstorms, with variations in resolution and illumination. Various kernels of the support vector machine (SVM) are applied to classify the features. Experimental results validate the improved performance of the proposed scheme compared to other related methods

    Distinguishing Malicious Drones Using Vision Transformer

    No full text
    Drones are commonly used in numerous applications, such as surveillance, navigation, spraying pesticides in autonomous agricultural systems, various military services, etc., due to their variable sizes and workloads. However, malicious drones that carry harmful objects are often adversely used to intrude restricted areas and attack critical public places. Thus, the timely detection of malicious drones can prevent potential harm. This article proposes a vision transformer (ViT) based framework to distinguish between drones and malicious drones. In the proposed ViT based model, drone images are split into fixed-size patches; then, linearly embeddings and position embeddings are applied, and the resulting sequence of vectors is finally fed to a standard ViT encoder. During classification, an additional learnable classification token associated to the sequence is used. The proposed framework is compared with several handcrafted and deep convolutional neural networks (D-CNN), which reveal that the proposed model has achieved an accuracy of 98.3%, outperforming various handcrafted and D-CNNs models. Additionally, the superiority of the proposed model is illustrated by comparing it with the existing state-of-the-art drone-detection methods

    A Novel Deep-Learning-Based Framework for the Classification of Cardiac Arrhythmia

    No full text
    Cardiovascular diseases (CVDs) are the primary cause of death. Every year, many people die due to heart attacks. The electrocardiogram (ECG) signal plays a vital role in diagnosing CVDs. ECG signals provide us with information about the heartbeat. ECGs can detect cardiac arrhythmia. In this article, a novel deep-learning-based approach is proposed to classify ECG signals as normal and into sixteen arrhythmia classes. The ECG signal is preprocessed and converted into a 2D signal using continuous wavelet transform (CWT). The time–frequency domain representation of the CWT is given to the deep convolutional neural network (D-CNN) with an attention block to extract the spatial features vector (SFV). The attention block is proposed to capture global features. For dimensionality reduction in SFV, a novel clump of features (CoF) framework is proposed. The k-fold cross-validation is applied to obtain the reduced feature vector (RFV), and the RFV is given to the classifier to classify the arrhythmia class. The proposed framework achieves 99.84% accuracy with 100% sensitivity and 99.6% specificity. The proposed algorithm outperforms the state-of-the-art accuracy, F1-score, and sensitivity techniques

    A Dual-Stage Vocabulary of Features (VoF)-Based Technique for COVID-19 Variants’ Classification

    No full text
    Novel coronavirus, known as COVID-19, is a very dangerous virus. Initially detected in China, it has since spread all over the world causing many deaths. There are several variants of COVID-19, which have been categorized into two major groups. These groups are variants of concern and variants of interest. Variants of concern are more dangerous, and there is a need to develop a system that can detect and classify COVID-19 and its variants without touching an infected person. In this paper, we propose a dual-stage-based deep learning framework to detect and classify COVID-19 and its variants. CT scans and chest X-ray images are used. Initially, the detection is done through a convolutional neural network, and then spatial features are extracted with deep convolutional models, while handcrafted features are extracted from several handcrafted descriptors. Both spatial and handcrafted features are combined to make a feature vector. This feature vector is called the vocabulary of features (VoF), as it contains spatial and handcrafted features. This feature vector is fed as an input to the classifier to classify different variants. The proposed model is evaluated based on accuracy, F1-score, specificity, sensitivity, specificity, Cohen’s kappa, and classification error. The experimental results show that the proposed method outperforms all the existing state-of-the-art methods

    A Comprehensive Survey of Digital Twins in Healthcare in the Era of Metaverse

    No full text
    Digital twins (DTs) are becoming increasingly popular in various industries, and their potential for healthcare in the metaverse continues to attract attention. The metaverse is a virtual world where individuals interact with digital replicas of themselves and the environment. This paper focuses on personalized and precise medicine and examines the current application of DTs in healthcare within the metaverse. Healthcare practitioners may use immersive virtual worlds to replicate medical scenarios, improve teaching experiences, and provide personalized care to patients. However, the integration of DTs in the metaverse poses technical, regulatory, and ethical challenges that need to be addressed, including data privacy, standards, and accessibility. Through this examination, we aim to provide insights into the transformative potential of DTs in healthcare within the metaverse and encourage further research and development in this exciting domain

    A Dual-Stage Vocabulary of Features (VoF)-Based Technique for COVID-19 Variants' Classification

    No full text
    Novel coronavirus, known as COVID-19, is a very dangerous virus. Initially detected in China, it has since spread all over the world causing many deaths. There are several variants of COVID-19, which have been categorized into two major groups. These groups are variants of concern and variants of interest. Variants of concern are more dangerous, and there is a need to develop a system that can detect and classify COVID-19 and its variants without touching an infected person. In this paper, we propose a dual-stage-based deep learning framework to detect and classify COVID-19 and its variants. CT scans and chest X-ray images are used. Initially, the detection is done through a convolutional neural network, and then spatial features are extracted with deep convolutional models, while handcrafted features are extracted from several handcrafted descriptors. Both spatial and handcrafted features are combined to make a feature vector. This feature vector is called the vocabulary of features (VoF), as it contains spatial and handcrafted features. This feature vector is fed as an input to the classifier to classify different variants. The proposed model is evaluated based on accuracy, F1-score, specificity, sensitivity, specificity, Cohen’s kappa, and classification error. The experimental results show that the proposed method outperforms all the existing state-of-the-art methods

    A Comprehensive Survey of Digital Twins and Federated Learning for Industrial Internet of Things (IIoT), Internet of Vehicles (IoV) and Internet of Drones (IoD)

    No full text
    As a result of the advancement in the fourth industrial revolution and communication technology, the use of digital twins (DT) and federated learning (FL) in the industrial Internet of Things (IIoT), the Internet of Vehicles (IoV), and the Internet of Drones (IoD) is increasing. However, the deployment of DT and FL for IoV is challenging. In this survey, we focus on DT and FL for IIoT, IoV, and IoD. Initially, we analyzed the existing surveys. In this paper, we present the applications of DT and FL in IIoT, IoV, and IoD. We also present the open research issues and future directions

    Bag of Features (BoF) Based Deep Learning Framework for Bleached Corals Detection

    No full text
    Coral reefs are the sub-aqueous calcium carbonate structures collected by the invertebrates known as corals. The charm and beauty of coral reefs attract tourists, and they play a vital role in preserving biodiversity, ceasing coastal erosion, and promoting business trade. However, they are declining because of over-exploitation, damaging fishery, marine pollution, and global climate changes. Also, coral reefs help treat human immune-deficiency virus (HIV), heart disease, and coastal erosion. The corals of Australia’s great barrier reef have started bleaching due to the ocean acidification, and global warming, which is an alarming threat to the earth’s ecosystem. Many techniques have been developed to address such issues. However, each method has a limitation due to the low resolution of images, diverse weather conditions, etc. In this paper, we propose a bag of features (BoF) based approach that can detect and localize the bleached corals before the safety measures are applied. The dataset contains images of bleached and unbleached corals, and various kernels are used to support the vector machine so that extracted features can be classified. The accuracy of handcrafted descriptors and deep convolutional neural networks is analyzed and provided in detail with comparison to the current method. Various handcrafted descriptors like local binary pattern, a histogram of an oriented gradient, locally encoded transform feature histogram, gray level co-occurrence matrix, and completed joint scale local binary pattern are used for feature extraction. Specific deep convolutional neural networks such as AlexNet, GoogLeNet, VGG-19, ResNet-50, Inception v3, and CoralNet are being used for feature extraction. From experimental analysis and results, the proposed technique outperforms in comparison to the current state-of-the-art methods. The proposed technique achieves 99.08% accuracy with a classification error of 0.92%. A novel bleached coral positioning algorithm is also proposed to locate bleached corals in the coral reef images

    A comprehensive survey of digital twins and federated learning for Industrial Internet of Things (IIoT), Internet of Vehicles (IoV) and Internet of Drones (IoD)

    No full text
    As a result of the advancement in the fourth industrial revolution and communication technology, the use of digital twins (DT) and federated learning (FL) in the industrial Internet of Things (IIoT), the Internet of Vehicles (IoV), and the Internet of Drones (IoD) is increasing. However, the deployment of DT and FL for IoV is challenging. In this survey, we focus on DT and FL for IIoT, IoV, and IoD. Initially, we analyzed the existing surveys. In this paper, we present the applications of DT and FL in IIoT, IoV, and IoD. We also present the open research issues and future directions
    corecore